Unsupervised Anomaly detection and segmentation in Brain MRI
Disease classification and localization in Chest X-Rays
Roles
Research assistant
PhD student
Publications
2023
F. Behrendt, D. Bhattacharya, J. Krüger, R. Roland, A. Schlaefer (2023). Nodule Detection in Chest Radiographs with Unsupervised Pre-Trained Detection Transformers. 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) 1-4 [Abstract]
[doi][BibTex]
2022
F. Behrendt, D. Bhattacharya, J. Krüger, R. Opfer, A. Schlaefer (2022). Data-Efficient Vision Transformers for Multi-Label Disease Classification on Chest Radiographs. Current Directions in Biomedical Engineering. 8. (1), 34-37 [Abstract]
[doi][www][BibTex]
2021
M. Bengs, F. Behrendt, J. Krüger, R. Opfer, A. Schlaefer
(2021).
Three-dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI.
International journal of computer assisted radiology and surgery.
16
(9),
1413-1423.
[Abstract] [doi][BibTex]
F. Behrendt, N. Gessert, A. Schlaefer
(2020).
Generalization of spatio-temporal deep learning for vision-based force estimation.
Current Directions in Biomedical Engineering.
6
(1),
20200024.
[Abstract] [doi][www][BibTex]